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SUMMARY

A class of P-stable singlestep methods is discussed for solving initial-value problems involving second-order
differential equations. The methods depend upon a parameter p > 0 and reduce to the classical methods for
p =0. A few choices of p have been discussed for which the methods are P-stable. Further, when p is chosen
for linear problems as the square of the frequency of the periodic solution, the methods arc P-stable.
Numerical results for both linear and non-linear problems show that the P-stability is an important rcquirc-
ment for determining periodic numerical solutions of second-order differential equations.

1. Introduction

Second-order differential equations with periodic solutions arise in a wide variety of important
physical problems. When conventional methods are applied to obtain the solution, the time
increment must be limited to a value of the order of the reciprocal of the frequency of the
periodic solution. Any attempt to use a larger increment results in the calculations becoming
unstable and producing completely erroneous results, The Stormer-Cowell linear multistep
methods of order greater than two are found to be unstable for large step sizes. Gautschi [2]
and Salzer [6] have developed multistep methods based on Fourier polynomials. Stiefel and
Bettis [8] have discussed the stabilisation of the Cowell method for integrating periodic initial-
value problems. Hybrid multistep methods have been studied by Dyer [1]. Lambert and
Watson [4] have discussed the application of symmetric multistep methods to periodic initial-
value problems. Singlestep methods have received much less attention as compared with multi-
step methods for solving periodic initial-value problems. Scheifele [7] has developed a singlestep
method based on the series expansion of the solution in terms of certain entire functions.
In this paper we develop singlestep methods of the form

yn+1 =yn +hy;1 +h2wl(tnrynrh)a

) , (1.1)
Va1 =V HY2(1,,3,.0),
to obtain a numerical solution of the periodic initial-value problem
y'hoo=fy),
(1.2)

y(to) =¥0,¥'(t6)=y0.
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The functions ¥,(z,,y,,%) and ¥,(¢,.»,,h) are the increment functions. If the increment
functions are used with the same local truncation error of O(h9 +1) then method (1.1) has local
truncation errors of O(h9*1)iny and O(h9) iny'. The global truncation error of method (1.1)
is then defined to be O(#?) and method (1.1) is said to be of order q. Let us apply method
(1.1) to the initial-value problem

y”=‘>\y, >\>0’ y(t0)=y03y’([0)=y£)9 (1‘3)

and assume that it can be written in the form

| A | (14)

yn+1 yn

where E(v/A ) is a 2 x 2 matrix.

Definition 1.1 Method (1.1) is said to have interval of periodicity (0,H7) if, for all H? €
(0,113 ), H=~/Xh, h being the step length, all the eigenvalues of E(+/A k) are complex and lie on
the unit circle.

Definition 1.2 The singlestep method defined by (1.1) is said to be P-stable if its interval of
periodicity is (0,e0).

Here, singlestep methods dependent on a parameter p are developed. The methods reduce to
their classical counterparts for p = 0. When p - oo, methods of lower order are obtained. For p
equal to the square of the frequency of the periodic solution in the linear homogeneous
equation, the singlestep methods are P-stable.

2. Derivation of the methods

We write (1.2) in the form

»" +py = o(ty) 2.1)

where

o(ty) =f(ty) +py 22
and p > 0 is an arbitrary parameter to be determined. The equation (2.1) can be written as
y +py=g(@t) (23)

where g(¢) may be considered as an approximation to the function ¢(z,y). The general solution
of (2.3) will consist of a complementary function and a particular integral. We have
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y()=Acos\pt+Bsinvp ¢t
+\/LE f :" sin VP (1 - ) g(r) dr (2.4a)

where 4 and B are arbitrary constants. Differentiating (2.4a) with respect to r we obtain

Y'(£)= — ApsinD t + B\/p cos\/p ¢
+ f; cosp (t ~ 1) g(r)dr. (24b)

Evaluating (2.4a) at 1,,,,¢, and (2.4b) at 7, and eliminating A and B from the resulting
equations we obtain

L. /
Y(ty,1) = cosN/ph y(t,) + —=sin\/ph y'(1,)
D

\/._
1 Tny
+ ﬁ f’n 1 Sin\/l;(tn.;.l - T) g(T)dT (253)

Evaluating (2 4a) at ¢, and (2.4b) at ¢, , ,, ¢, and eliminating 4 and B from the resulting equa-
tion we obtain

V'(tye1) = — P sinNph y(1,) + cos/ph y'(1,)

+ ft’"“ cosvp (1, —7)g(r) dr. (2.5b)

n

Since y(¢) and y'(¢) are known at the initial point 7 =7, to derive singlestep methods for the
numerical integration of equation (2.1), we replace the functiong(7) in (2.5) by an appropriate
interpolating polynomial at ¢ = ¢, and obtain singlestep methods of the form (1.1).

2.1 Taylor-series methods

We approximate ¢(Z,y) by Taylor’s interpolating polynomial of degree ¢ + 1 at £ = ¢,, and sub-
stitute for g(7) in (2.5) the approximate polynomial

a (r—-t)"
g(M)= (1) =m2=0 ——m—,"— )+ T,y (2.6)
where
(T —t )Q+l
Toi= e @@ 6 <E<hug 27
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Neglecting the error term and using (2.6) in (2.5) we write the singlestep methods with

w =/ph as

py RO L3 gmer g (m) 2.8

Vne1 SVpCOsw+ny, o +m=0 m+2%n s (2.8a)
q

hy, .1 =~¥, wsinw +hy, cos w +mE=o W E o), (2.8b)

with corresponding truncation errors in y and ¥’ being given by
TEqyy =h* Fauy oD@ + O(ph™*9), (2.94)

TE,

w1 =HTTEF L, dDE) + 0(ph ), (2.9b)

where we have used

R B T
m+2_m!_h"’+2\/p7

t
[, sinvp (g, =1 (= 1,)" dr, (2.10)
n

From (2.10) we can obtain the recurrence relation

wsz“:ZIE _F,, m=0,1,2, .., @.11)

sin w

with Fy =cos wand F, =

It can be easily verified from (2.10) that

1
Fria— m+d) as w0, (2.12a)
Fo>0asw—>oo (2.12b)

and from (2.11)

1
: 2
lim  w* F,, ., ol

W—o0

i

(2.12¢)

Thus the modified Taylor-series method (2.8) will become the classical Taylor-series method of
order g+1 as w — 0 and of order g—1 as w — . For arbitrary p, it is of order g—1.

2.2 Runge-Kutta methods

To avoid calculation of higher-order derivatives of ¢(z,y) in the modified Taylor-series method
(2.8) we write (2.8) in the modified Runge-Kutta form (see Lawson [5]) as
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: M
Vnp1 =¥nCOS @ +hy, D WK, (2.13a)
i=1
M
hY' o1 =Y, wsin w+hy, cosw+ : WK;, (2.13b)
i=
where
h2
Ll = .—2— f(tnyyn)9
h2
Ky=L,+ %— Yo
h2
Li = 5 f(l‘n +a,-h, Zi)’

i—1

Z, =y, +ahy, + ‘21 a;L;,
j=

2

ph .
Ki =Li+_2 Zi’ i=2,3,.,M

The parameters a;, W; and W*are determined from the equations obtained by comparing the
coefficients of the various order derivatives of ¢(#,y) in (2.8) and (2.13). The abscissas 0
<a;<1,i=2(1)M are specified suitably and the values W; and W*in (2.13) fori = 1(1)M are
obtained as functions of w. Further, we also get an implicit equation in p which for p =0 is
identically satisfied.

In order to get an explicit expression for the determination of p, we adopt Treanor’s [9]
approach and write f(¢,y) in (1.2) as

feyy=—-pOy -y,)+A+B({t~1t,)+ —g-(t —t,)*. (2.14)

Evaluating (2.14) at the points #,, ;= ¢, +a;h, i =2,3,4, we obtain four equations for the
determination of the four unknowns p,4,B,C. Denoting f; = f(¢t,.v,), f; = f(t;.y:), ¢; = fi+pY;
we write the values for 4,B,C and p as

A =fla

Bh ={di(¢; —¢1) —a5(p3s — 1)}/ Aa,

2
% = —{a3(p; — 1) —a2(03 —¢1)}/Aa,

(fa —f1)As —(fs —f1)A3 +(f, — 14,
4 =—{ } (2.15)
Va ~y1)As — (3 —y1)A3 + (1, —¥1)42

where

A, =aszas(as —a3), Az =aza4(as —az),
Ay =ayas(as —ay), a; #a3 #as.
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If we make use of the nodes of the classical Runge-Kutta four-stage method wherein
a, =as viz.a, = as =%, ay =%, asz =0, as =7i
as =1, aq =a4 =0, a3 =1,
the values of 4, B, C and p are obtained from (2.14) as
A =/,
Bh = -3¢, +2¢; + 2903 — ¥a,

ch? =41 ~ 2 — 3 +¢4),

3 -f
=_ . 2.16

p Y3 =2 ( )
2.3 Runge-Kutta-Treanor-Methods
With the values of 4,B,C and p as given by (2.15) we can write (2.14) as

o(1.y)=f(r.y) +py

C 2
=py,+A+B(T—1t,)+ 3 (r-1¢,). 2.17)

Using the polynomial approximation (2.17) for g(r) in the integrals (2.5) and following the
procedure adopted in Section 2.1 in determining the modified Taylor-series method (2.8), we
obtain the following explicit method

Vnst =Vn + Wy STE 4 HAF, + BRF; + OHF, ), (2.18a)

Vny1 =Vpcos w + hlAF| + BhF, + Ch?F,], (2.18b)
which for a; # a3 # a4 can be written in the modified Runge-Kutta form (2.13) for M = 4 with

W, =2F, —{2(a% — a2)F3 —4(as —a,)F4 }/A,,

W, = (2a3F3 — 4a3F,)/A,,

W3 = (—2a;F, +4a,F,)/Aa,

W, =0, (2.19)
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WE=2F, —{2(a5 — a))F, —4(a; — a2)F3}HAs,
WX = (2d3F, — 4a,F;)/A,,
Wi =(-2d3F, +4a,F3)/A,,
wy=0.

If we make use of the classical nodes and the values of 4, B, C, p as given in (2.16), we can write
(2.18) in the form (2.13) for M = 4 with

W, =2F, — 6F3 + 8F,,
W, = Wy = 4(F; — 2F,),
Wy = —2(F; —4F,),
W*=2F, — 6F, +8F,,
WE=WE=4(F, — 2F,),

(2.20)
Wk=—2(F, —4F,).

3. Accuracy and stability

The order g of a singlestep method is defined to be the number ¢ for which the coefficients of
the method agree with the coefficients in the Taylor-series expansion of the solution y (¢, +/) up
to the term #9. We note that the explicit methods (2.13) for M = 4 become methods of O(k*)
and O(h*) as p - 0 and as p - o respectively. The Runge-Kutta-type methods (2.19) are of
O(h*) when p = 0 and of O(h) as p - co.

Applying the modified singlestep method developed above to the test equation

y'==Apy, A>0, (3.1)

we find that when p is estimated as given in (2.15) or p is chosen as the square of the frequency
of the solution of the linear homogeneous problem in (3.1), viz. p = A,

o, =lhi+py;

=")\yi+pyj=0’ f0ri= 1,273945
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and so the method becomes

, sin w
Ynsl =y,c08 w +hy, ©

h! _ . h 14
Ype1 = —Vpw sin w + Ay, cos w,

which can be written as

sin w
Yn1 cos w w In
= 32)
hyy.1 —wsin w cos w hy,,
The characteristic equation of the method is
g2 —2coswE+1=0. 33)

The roots of (3.3) are complex and are of unit modulus and hence by the definition (1.2), the
method is P-stable.

4. Numerical results

We use the method (2.13) for M =4 and the Runge-Kutta-Treanor method (2.19), with Nys-

trém nodes (see Henrici[3]) and Lobatto nodes to find the numerical solution of the following
initial-value problems:

1
) »' +(100+ — )y=0
M y+( e Y

with the exact solution
(1) =/t Jo(10¢) where J, is the Bessel function of order zero.

. X n . Y
@ x"=-=5,)=-%5
P’ P

with the exact solution x = cos £, ¥ = sin  where r? = x2 + y2,
The error values £ = |y (t,,)—,,| are tabulated in Table I. We choose p as follows:
for problem I:

(i) asgiven by (2.15)
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and
(iiyasp, =2, (1) =100 + —17 ,
4r,

and for problem II:

(i) asgiven by (2.15)
and

(i) asp, =\, (6,) = ~ .
rn
The modified methods produce superior results compared with the corresponding classical
methods (iif) p = 0, for the choice (i), viz. p,, = A, (¢,,). However, it is noticed that the choice of
p given by (i) gives results of almost the same accuracy for problem I, whereas for problem II
the choice (ii) gives more accurate results.

TABLE |
METHODS NYSTROM-RK4 LOBATTO-RK4 RK-NYSTROM- RK-LOBATTO-
(2.13) (2.13) TREANOR TREANOR
(2.18) (2.18)
h

1
Y+ (100+ ———2-) y=0, p() =/11,(101). Absolute errorat ¢ = 6:
4t

(i) 0.4868(-05) 0.3257(-03) 0.4868(-05) 0.3257(-03)
0.2 (ii) 0.4174(-05) 0.3477(-04) 0.4417(-04) 0.7120(~05)

(iii) 0.1470 0.1999 0.2372 0.2388

(i) 0.8081(-05) 0.3881(-04) 0.8081(-05) 0.3881(-04)
0.25 (ii) 0.3308(-04) 0.1197(-03) 0.1458(-03) 0.6222(-04)

(iii) 0.3661 0.2254 0.8465(+04) 0.2274

o) 0.3229(~04) 0.1200(~03) 0.3229(~04) 0.1200(-03)
0.5 (ii) 0.1816(-02) 0.2172(-03) 0.3832(-02) 0.3209(-03)

(iii) 0.2279(+09) 0.2555(+10) 0.1155(+10) 0.2460(+10)

w_ 3 B
x = x/r3 X =cost Absolute error in radius at # = 127:
Y= —ylr y=sint

n (i) 0.1095(-05) 0.1491(-03) 0.1322(-04) 0.1389(-03)
‘l“g (ii) 0.3404(-06) 0.8612(-07) 0.1076(-03) 0.1875(-04)

(iii) 0.1324(-04) 0.1151(-04) 0.1725(-01) 0.7862(-03)
. i) 0.5971(-06) 0.3203(-03) 0.3002(-04) 0.3003(-03)
—1? (ii) 0.1201(-05) 0.3255(-06) 0.2643(-03) 0.4654(-04)

(iii) 0.3258(-04) 0.2855(-04) 0.3065(—01) 0.1356(-02)
. (i) 0.7567(-05) 0.5917(-02) 0.4294(-03) 0.5566(-02)
‘1‘6 (ii) 0.2033(-04) 0.5508(-05) 0.1907(-02) 0.3494(-03)

(iii) 0.2361(-03) 0.2144(-03) 0.1350 0.4541(-02)
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