P-stable singlestep methods for periodic initial-value problems involving second-order differential equations

M. K. JAIN, R.K.JAIN AND U. ANANTHA KRISHNAIAH
Computer Centre, Indian Institute of Technology, New Delhi-110029, India

(Reccived January 17, 1979)

Abstract

SUMMARY A class of P-stable singlestep methods is discussed for solving initial-value problems involving second-order differential equations. The methods depend upon a parameter $p>0$ and reduce to the elassical methods for $p=0$. A few choices of p have been discussed for which the methods are P-stable. Further, when p is chosen for linear problems as the square of the frequency of the periodic solution, the methods are P-stable. Numerical results for both linear and non-linear problems show that the P-stability is an important rcquirement for determining periodic numerical solutions of second-order differential equations.

1. Introduction

Second-order differential equations with periodic solutions arise in a wide variety of important physical problems. When conventional methods are applied to obtain the solution, the time increment must be limited to a value of the order of the reciprocal of the frequency of the periodic solution. Any attempt to use a larger increment results in the calculations becoming unstable and producing completely erroneous results. The Störmer-Cowell linear multistep methods of order greater than two are found to be unstable for large step sizes. Gautschi [2] and Salzer [6] have developed multistep methods based on Fourier polynomials. Stiefel and Bettis [8] have discussed the stabilisation of the Cowell method for integrating periodic initialvalue problems. Hybrid multistep methods have been studied by Dyer [1]. Lambert and Watson [4] have discussed the application of symmetric multistep methods to periodic initialvalue problems. Singlestep methods have received much less attention as compared with multistep methods for solving periodic initial-value problems. Scheifele [7] has developed a singlestep method based on the series expansion of the solution in terms of certain entire functions.

In this paper we develop singlestep methods of the form

$$
\begin{align*}
& y_{n+1}=y_{n}+h y_{n}^{\prime}+h^{2} \psi_{1}\left(t_{n}, y_{n}, h\right) \tag{1.1}\\
& y_{n+1}^{\prime}=y_{n}^{\prime}+h \psi_{2}\left(t_{n}, y_{n}, h\right)
\end{align*}
$$

to obtain a numerical solution of the periodic initial-value problem

$$
\begin{align*}
& y^{\prime \prime}=f(t, y), \\
& y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime} . \tag{1.2}
\end{align*}
$$

The functions $\psi_{1}\left(t_{n}, y_{n}, h\right)$ and $\psi_{2}\left(t_{n}, y_{n}, h\right)$ are the increment functions. If the increment functions are used with the same local truncation error of $O\left(h^{q+1}\right)$ then method (1.1) has local truncation errors of $O\left(h^{q+1}\right)$ in y and $O\left(h^{q}\right)$ in y^{\prime}. The global truncation error of method (1.1) is then defined to be $O\left(h^{q}\right)$ and method (1.1) is said to be of order q. Let us apply method (1.1) to the initial-value problem

$$
\begin{equation*}
y^{\prime \prime}=-\lambda y, \quad \lambda>0, \quad y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}, \tag{1.3}
\end{equation*}
$$

and assume that it can be written in the form

$$
\left[\begin{array}{l}
y_{n+1} \tag{1.4}\\
h y_{n+1}^{\prime}
\end{array}\right]=\mathbf{E}(\sqrt{\lambda} h) \quad\left[\begin{array}{l}
y_{n} \\
h y_{n}^{\prime}
\end{array}\right]
$$

where $\mathrm{E}(\sqrt{\lambda} h)$ is a 2×2 matrix.
Definition 1.1 Method (1.1) is said to have interval of periodicity $\left(0, H_{0}^{2}\right)$ if, for all $H^{2} \epsilon$ ($0, H_{0}^{2}$), $H=\sqrt{\lambda} h, h$ being the step length, all the eigenvalues of $\mathrm{E}(\sqrt{\lambda} h)$ are complex and lie on the unit circle.
Definition 1.2 The singlestep method defined by (1.1) is said to be P-stable if its interval of periodicity is $(0, \infty)$.
Here, singlestep methods dependent on a parameter p are developed. The methods reduce to their classical counterparts for $p=0$. When $\mathrm{p} \rightarrow \infty$, methods of lower order are obtained. For p equal to the square of the frequency of the periodic solution in the linear homogeneous equation, the singlestep methods are P-stable.

2. Derivation of the methods

We write (1.2) in the form

$$
\begin{equation*}
y^{\prime \prime}+p y=\varphi(t, y) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(t, y)=f(t, y)+p y \tag{2.2}
\end{equation*}
$$

and $p>0$ is an arbitrary parameter to be determined. The equation (2.1) can be written as

$$
\begin{equation*}
y^{\prime \prime}+p y=g(t) \tag{2.3}
\end{equation*}
$$

where $g(t)$ may be considered as an approximation to the function $\varphi(t, y)$. The general solution of (2.3) will consist of a complementary function and a particular integral. We have

$$
\begin{align*}
y(t) & =A \cos \sqrt{p} t+B \sin \sqrt{p} t \\
& +\frac{1}{\sqrt{p}} \int_{t_{n}}^{t} \sin \sqrt{p}(t-\tau) g(\tau) d \tau \tag{2.4a}
\end{align*}
$$

where A and B are arbitrary constants. Differentiating (2.4a) with respect to t we obtain

$$
\begin{align*}
y^{\prime}(t) & =-A \sqrt{p} \sin \sqrt{p} t+B \sqrt{p} \cos \sqrt{p} t \\
& +\int_{t_{n}}^{t} \cos \sqrt{p}(t-\tau) g(\tau) d \tau \tag{2.4b}
\end{align*}
$$

Evaluating (2.4a) at t_{n+1}, t_{n} and (2.4b) at t_{n} and eliminating A and B from the resulting equations we obtain

$$
\begin{align*}
y\left(t_{n+1}\right) & =\cos \sqrt{p} h y\left(t_{n}\right)+\frac{1}{\sqrt{p}} \sin \sqrt{p} h y^{\prime}\left(t_{n}\right) \\
& +\frac{1}{\sqrt{p}} \int_{t_{n}}^{t_{n+1}} \sin \sqrt{p}\left(t_{n+1}-\tau\right) g(\tau) d \tau . \tag{2.5a}
\end{align*}
$$

Evaluating (2.4a) at t_{n} and (2.4b) at t_{n+1}, t_{n} and eliminating A and B from the resulting equation we obtain

$$
\begin{align*}
y^{\prime}\left(t_{n+1}\right) & =-\sqrt{p} \sin \sqrt{p} h y\left(t_{n}\right)+\cos \sqrt{p} h y^{\prime}\left(t_{n}\right) \\
& +\int_{t_{n}}^{t_{n+1}} \cos \sqrt{p}\left(t_{n+1}-\tau\right) g(\tau) d \tau . \tag{2.5b}
\end{align*}
$$

Since $y(t)$ and $y^{\prime}(t)$ are known at the initial point $t=t_{n}$, to derive singlestep methods for the numerical integration of equation (2.1), we replace the function $g(\tau)$ in (2.5) by an appropriate interpolating polynomial at $t=t_{n}$ and obtain singlestep methods of the form (1.1).

2.1 Taylor-series methods

We approximate $\varphi(t, y)$ by Taylor's interpolating polynomial of degree $q+1$ at $t=t_{n}$ and substitute for $g(\tau)$ in (2.5) the approximate polynomial

$$
\begin{equation*}
g(\tau)=\varphi(\tau, y)=\sum_{m=0}^{q} \frac{\left(\tau-t_{n}\right)^{m}}{m!} \varphi_{n}^{(m)}\left(t_{n}\right)+T_{q+1} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{q+1}=\frac{\left(\tau-t_{n}\right)^{q+1}}{(q+1)!} \varphi^{(q+1)}(\xi), t_{n}<\xi<t_{n+1} \tag{2.7}
\end{equation*}
$$

Neglecting the error term and using (2.6) in (2.5) we write the singlestep methods with $\omega=\sqrt{p} h$ as

$$
\begin{align*}
& y_{n+1}=y_{n} \cos \omega+h y_{n}^{\prime} \frac{\sin \omega}{\omega}+\sum_{m=0}^{q} h^{m+2} F_{m+2} \varphi_{n}^{(m)}, \tag{2.8a}\\
& h y_{n+1}^{\prime}=-y_{n} \omega \sin \omega+h y_{n}^{\prime} \cos \omega+\sum_{m=0}^{q} h^{m+2} F_{m+1} \varphi_{n}^{(m)}, \tag{2.8b}
\end{align*}
$$

with corresponding truncation errors in y and y^{\prime} being given by

$$
\begin{align*}
& T E_{q+1}=h^{q+3} F_{q+3} \varphi^{(q+1)}(\xi)+O\left(p h^{q+4}\right) \tag{2.9a}\\
& T E_{q+1}^{\prime}=h^{q+2} F_{q+2} \varphi^{(q+1)}(\xi)+O\left(p h^{q+3}\right) \tag{2.9b}
\end{align*}
$$

where we have used

$$
\begin{equation*}
F_{m+2}=\frac{1}{m!}-\frac{1}{h^{m+2}} \frac{1}{\sqrt{p}} \int_{t_{n}}^{t_{n+1}} \sin \sqrt{p}\left(t_{n+1}-\tau\right)\left(\tau-t_{n}\right)^{m} d \tau \tag{2.10}
\end{equation*}
$$

From (2.10) we can obtain the recurrence relation

$$
\begin{equation*}
\omega^{2} F_{m+2}=\frac{1}{m!}-F_{m}, m=0,1,2, \ldots \tag{2.11}
\end{equation*}
$$

with $F_{0}=\cos \omega$ and $F_{1}=\frac{\sin \omega}{\omega}$.
It can be easily verified from (2.10) that

$$
\begin{align*}
& F_{m+2} \rightarrow \frac{1}{(m+2)} \text { as } \omega \rightarrow 0 \tag{2.12a}\\
& F_{m+2} \rightarrow 0 \text { as } \omega \rightarrow \infty \tag{2.12b}
\end{align*}
$$

and from (2.11)

$$
\begin{equation*}
\lim _{\omega \rightarrow \infty} \omega^{2} F_{m+2}=\frac{1}{m!} \tag{2.12c}
\end{equation*}
$$

Thus the modified Taylor-series method (2.8) will become the classical Taylor-series method of order $q+1$ as $\omega \rightarrow 0$ and of order $q-1$ as $\omega \rightarrow \infty$. For arbitrary p, it is of order $q-1$.

2.2 Runge-Kutta methods

To avoid calculation of higher-order derivatives of $\varphi(t, y)$ in the modified Taylor-series method (2.8) we write (2.8) in the modified Runge-Kutta form (see Lawson [5]) as

$$
\begin{align*}
& y_{n+1}=y_{n} \cos \omega+h y_{n}^{\prime} \frac{\sin \omega}{\omega}+\sum_{i=1}^{M} W_{i} K_{i}, \tag{2.13a}\\
& h y_{n+1}^{\prime}=-y_{n} \omega \sin \omega+h y_{n}^{\prime} \cos \omega+\sum_{i=1}^{M} W_{i}^{*} K_{i}, \tag{2.13b}
\end{align*}
$$

where

$$
\begin{aligned}
& L_{1}=\frac{h^{2}}{2} f\left(t_{n}, y_{n}\right), \\
& K_{1}=L_{1}+\frac{p h^{2}}{2} y_{n}, \\
& L_{i}=\frac{h^{2}}{2} f\left(t_{n}+a_{i} h, Z_{i}\right), \\
& Z_{i}=y_{n}+a_{i} h y_{n}^{\prime}+\sum_{j=1}^{i-1} a_{i j} L_{j}, \\
& K_{i}=L_{i}+\frac{p h^{2}}{2} Z_{i}, \quad i=2,3, \ldots, M .
\end{aligned}
$$

The parameters a_{i}, W_{i} and W_{i}^{*} are determined from the equations obtained by comparing the coefficients of the various order derivatives of $\varphi(t, y)$ in (2.8) and (2.13). The abscissas 0 $<a_{i} \leqslant 1, i=2(1) M$ are specified suitably and the values W_{i} and W_{i}^{*} in (2.13) for $i=1(1) \mathrm{M}$ are obtained as functions of ω. Further, we also get an implicit equation in p which for $p=0$ is identically satisfied.

In order to get an explicit expression for the determination of p, we adopt Treanor's [9] approach and write $f(t, y)$ in (1.2) as

$$
\begin{equation*}
f(t, y)=-p\left(y-y_{n}\right)+A+B\left(t-t_{n}\right)+\frac{C}{2}\left(t-t_{n}\right)^{2} . \tag{2.14}
\end{equation*}
$$

Evaluating (2.14) at the points $t_{n}, t_{i}=t_{n}+a_{i} h, i=2,3,4$, we obtain four equations for the determination of the four unknowns p, A, B, C. Denoting $f_{1}=f\left(t_{n}, y_{n}\right), f_{i}=f\left(t_{i}, y_{i}\right), \varphi_{i}=f_{i}+p y_{i}$ we write the values for A, B, C and p as

$$
\begin{align*}
A & =f_{1}, \\
B h & =\left\{a_{3}^{2}\left(\varphi_{2}-\varphi_{1}\right)-a_{2}^{2}\left(\varphi_{3}-\varphi_{1}\right)\right\} / A_{4}, \\
\frac{C h^{2}}{2} & =-\left\{a_{3}\left(\varphi_{2}-\varphi_{1}\right)-a_{2}\left(\varphi_{3}-\varphi_{1}\right)\right\} / A_{4}, \\
p & =-\left\{\frac{\left(f_{4}-f_{1}\right) A_{4}-\left(f_{3}-f_{1}\right) A_{3}+\left(f_{2}-f_{1}\right) A_{2}}{\left(y_{4}-y_{1}\right) A_{4}-\left(y_{3}-y_{1}\right) A_{3}+\left(y_{2}-y_{1}\right) A_{2}}\right\} \tag{2.15}
\end{align*}
$$

where

$$
\begin{aligned}
& A_{2}=a_{3} a_{4}\left(a_{4}-a_{3}\right), \quad A_{3}=a_{2} a_{4}\left(a_{4}-a_{2}\right), \\
& A_{4}=a_{2} a_{3}\left(a_{3}-a_{2}\right), \quad a_{2} \neq a_{3} \neq a_{4} .
\end{aligned}
$$

If we make use of the nodes of the classical Runge-Kutta four-stage method wherein

$$
\begin{gathered}
a_{2}=a_{3} \text { viz. } a_{2}=a_{3}=\frac{1}{2}, \quad a_{21}=\frac{1}{4}, \quad a_{31}=0, a_{32}=\frac{1}{4} \\
a_{4}=1, a_{41}=a_{42}=0, a_{43}=1
\end{gathered}
$$

the values of A, B, C and p are obtained from (2.14) as

$$
\begin{align*}
A & =f_{1} \\
B h & =-3 \varphi_{1}+2 \varphi_{2}+2 \varphi_{3}-\varphi_{4} \\
C h^{2} & =4\left(\varphi_{1}-\varphi_{2}-\varphi_{3}+\varphi_{4}\right) \\
p & =-\frac{f_{3}-f_{2}}{y_{3}-y_{2}} \tag{2.16}
\end{align*}
$$

2.3 Runge-Kutta-Treanor-Methods

With the values of A, B, C and p as given by (2.15) we can write (2.14) as

$$
\begin{align*}
\varphi(\tau, y) & =f(\tau, y)+p y \\
& =p y_{n}+A+B\left(\tau-t_{n}\right)+\frac{C}{2}\left(\tau-t_{n}\right)^{2} . \tag{2.17}
\end{align*}
$$

Using the polynomial approximation (2.17) for $g(\tau)$ in the integrals (2.5) and following the procedure adopted in Section 2.1 in determining the modified Taylor-series method (2.8), we obtain the following explicit method

$$
\begin{align*}
& y_{n+1}=y_{n}+h y_{n}^{\prime} \frac{\sin \omega}{\omega}+h^{2}\left[A F_{2}+B h F_{3}+C h^{2} F_{4}\right] \tag{2.18a}\\
& y_{n+1}^{\prime}=y_{n}^{\prime} \cos \omega+h\left[A F_{1}+B h F_{2}+C h^{2} F_{3}\right] \tag{2.18b}
\end{align*}
$$

which for $a_{2} \neq a_{3} \neq a_{4}$ can be written in the modified Runge-Kutta form (2.13) for $M=4$ with

$$
\begin{align*}
& W_{1}=2 F_{2}-\left\{2\left(a_{3}^{2}-a_{2}^{2}\right) F_{3}-4\left(a_{3}-a_{2}\right) F_{4}\right\} / A_{4}, \\
& W_{2}=\left(2 a_{3}^{2} F_{3}-4 a_{3} F_{4}\right) / A_{4}, \\
& W_{3}=\left(-2 a_{2}^{2} F_{3}+4 a_{2} F_{4}\right) / A_{4}, \\
& W_{4}=0, \tag{2.19}
\end{align*}
$$

$$
\begin{aligned}
& W_{1}^{*}=2 F_{1}-\left\{2\left(a_{3}^{2}-a_{2}^{2}\right) F_{2}-4\left(a_{3}-a_{2}\right) F_{3}\right\} / A_{4}, \\
& W_{2}^{*}=\left(2 a_{3}^{2} F_{2}-4 a_{3} F_{3}\right) / A_{4}, \\
& W_{3}^{*}=\left(-2 a_{2}^{2} F_{2}+4 a_{2} F_{3}\right) / A_{4}, \\
& W_{4}^{*}=0 .
\end{aligned}
$$

If we make use of the classical nodes and the values of A, B, C, p as given in (2.16), we can write (2.18) in the form (2.13) for $M=4$ with

$$
\begin{align*}
& W_{1}=2 F_{2}-6 F_{3}+8 F_{4}, \\
& W_{2}=W_{3}=4\left(F_{3}-2 F_{4}\right), \\
& W_{4}=-2\left(F_{3}-4 F_{4}\right), \\
& W_{1}^{*}=2 F_{1}-6 F_{2}+8 F_{3}, \\
& W_{2}^{*}=W_{3}^{*}=4\left(F_{2}-2 F_{3}\right), \\
& W_{4}^{*}=-2\left(F_{2}-4 F_{3}\right) . \tag{2.20}
\end{align*}
$$

3. Accuracy and stability

The order q of a singlestep method is defined to be the number q for which the coefficients of the method agree with the coefficients in the Taylor-series expansion of the solution $y\left(t_{n}+h\right)$ up to the term h^{q}. We note that the explicit methods (2.13) for $M=4$ become methods of $O\left(h^{4}\right)$ and $O\left(h^{2}\right)$ as $p \rightarrow 0$ and as $p \rightarrow \infty$ respectively. The Runge-Kutta-type methods (2.19) are of $O\left(h^{3}\right)$ when $p=0$ and of $O(h)$ as $p \rightarrow \infty$.

Applying the modified singlestep method developed above to the test equation

$$
\begin{equation*}
y^{\prime \prime}=-\lambda y, \quad \lambda>0, \tag{3.1}
\end{equation*}
$$

we find that when p is estimated as given in (2.15) or p is chosen as the square of the frequency of the solution of the linear homogeneous problem in (3.1), viz. $p=\lambda$,

$$
\begin{aligned}
\varphi_{i} & =f_{i}+p y_{i} \\
& =-\lambda y_{i}+p y_{i}=0, \text { for } i=1,2,3,4,
\end{aligned}
$$

and so the method becomes

$$
\begin{aligned}
& y_{n+1}=y_{n} \cos \omega+h y_{n}^{\prime} \frac{\sin \omega}{\omega} \\
& h y_{n+1}^{\prime}=-y_{n} \omega \sin \omega+h y_{n}^{\prime} \cos \omega,
\end{aligned}
$$

which can be written as

$$
\left[\begin{array}{l}
y_{n+1} \tag{3.2}\\
h y_{n+1}^{\prime}
\end{array}\right]=\left[\begin{array}{lc}
\cos \omega & \frac{\sin \omega}{\omega} \\
-\omega \sin \omega & \cos \omega
\end{array}\right]\left[\begin{array}{l}
y_{n} \\
h y_{n}^{\prime}
\end{array}\right]
$$

The characteristic equation of the method is

$$
\begin{equation*}
\xi^{2}-2 \cos \omega \xi+1=0 \tag{3.3}
\end{equation*}
$$

The roots of (3.3) are complex and are of unit modulus and hence by the definition (1.2), the method is P-stable.

4. Numerical results

We use the method (2.13) for $M=4$ and the Runge-Kutta-Treanor method (2.19), with Nyström nodes (see Henrici [3]) and Lobatto nodes to find the numerical solution of the following initial-value problems:
(i) $y^{\prime \prime}+\left(100+\frac{1}{4 t^{2}}\right) y=0$
with the exact solution

$$
y(t)=\sqrt{t} J_{0}(10 t) \text { where } J_{0} \text { is the Bessel function of order zero. }
$$

(ii) $x^{\prime \prime}=-\frac{x}{r^{3}}, y^{\prime \prime}=-\frac{y}{r^{3}}$
with the exact solution $x=\cos t, y=\sin t$ where $r^{2}=x^{2}+y^{2}$.
The error values $E=\left|y\left(t_{n}\right)-y_{n}\right|$ are tabulated in Table I. We choose p as follows:
for problem I:
(i) as given by (2.15)
and
(ii) as $p_{n}=\lambda_{n}\left(t_{n}\right)=100+\frac{1}{4 t_{n}^{2}}$,
and for problem II:
(i) as given by (2.15)
and
(ii) as $p_{n}=\lambda_{n}\left(t_{n}\right)=\frac{1}{r_{n}^{3}}$.

The modified methods produce superior results compared with the corresponding classical methods (iii) $p=0$, for the choice (ii), viz. $p_{n}=\lambda_{n}\left(t_{n}\right)$. However, it is noticed that the choice of p given by (i) gives results of almost the same accuracy for problem I, whereas for problem II the choice (ii) gives more accurate results.

TABLE I

METHODS	NYSTRÖM-RK4	LOBATTO-RK4	RK-NYSTRÖM-	RK-LOBATTO-
	(2.13)	(2.13)	TREANOR	TREANOR
h			(2.18)	(2.18)

$y^{\prime \prime}+\left(100+\frac{1}{4 t^{2}}\right) y=0, \quad y(t)=\sqrt{t} J_{0}(10 t) . \quad$ Absolute error at $t=6$:

	(i)	$0.4868(-05)$	$0.3257(-03)$	$0.4868(-05)$	$0.3257(-03)$
0.2	(ii)	$0.4174(-05)$	$0.3477(-04)$	$0.4417(-04)$	$0.7120(-05)$
	(iii)	0.1470	0.1999	0.2372	0.2388
	(i)	$0.8081(-05)$	$0.3881(-04)$	$0.8081(-05)$	$0.3881(-04)$
0.25	(ii)	$0.3308(-04)$	$0.1197(-03)$	$0.1458(-03)$	$0.6222(-04)$
	(iii)	0.3661	0.2254	$0.8465(+04)$	0.2274
	(i)	$0.3229(-04)$	$0.1200(-03)$	$0.3229(-04)$	$0.1200(-03)$
0.5	(ii)	$0.1816(-02)$	$0.2172(-03)$	$0.3832(-02)$	$0.3209(-03)$
	(iii)	$0.2279(+09)$	$0.2555(+10)$	$0.1155(+10)$	$0.2460(+10)$

$\left\{\begin{array}{l}x^{\prime \prime}=-x / r^{3} \\ y^{\prime \prime}=-y / r^{3}\end{array} \quad\left\{\begin{array}{l}x=\cos t \\ y=\sin t\end{array} \quad\right.\right.$ Absolute error in radius at $t=12 \pi$:

	(i)	$0.1095(-05)$	$0.1491(-03)$	$0.1322(-04)$	$0.1389(-03)$
$\frac{\pi}{18}$	(ii)	$0.3404(-06)$	$0.8612(-07)$	$0.1076(-03)$	$0.1875(-04)$
	(iii)	$0.1324(-04)$	$0.1151(-04)$	$0.1725(-01)$	$0.7862(-03)$
$\frac{\pi}{15}$	(i)	$0.5971(-06)$	$0.3203(-03)$	$0.3002(-04)$	$0.3003(-03)$
	(ii)	$0.1201(-05)$	$0.3255(-06)$	$0.2643(-03)$	$0.4654(-04)$
	(iii)	$0.3258(-04)$	$0.2855(-04)$	$0.3065(-01)$	$0.1356(-02)$
$\frac{\pi}{10}$	(i)	$0.7567(-05)$	$0.5917(-02)$	$0.4294(-03)$	$0.5566(-02)$
	(ii)	$0.2033(-04)$	$0.5508(-05)$	$0.1907(-02)$	$0.3494(-03)$
	(iii)	$0.2361(-03)$	$0.2144(-03)$	0.1350	$0.4541(-02)$

REFERENCES

[1] J. Dyer, Generalised multistep methods in satellite orbit computation, JACM 15 (1968) 712-719.
[2] W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math. 3 (1961) 381-397.
[3] P. Henrici, Discrete variable methods in ordinary differential equations, Wiley (1962).
$[4]$ J. D. Lambert and I. A. Watson, Symmetric multistep methods for periodic initial value problems, J. Inst. Maths. Applics. 18 (1976) 189-202.
[5] J. D Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants, SIAM J. Numer. Anal. 4 (1967) 372-380.
[6] H.E. Salzer, Trigonometric interpolation and predictor-corrector formulas for numerical integration, ZAMM 42 (1962) 403-412.
[7] G. Scheifele, On numerical integration of perturbed linear oscillating systems, ZAMP 22 (1971) 186-210.
[8] E. Stiefel and D. G. Bettis, Stabilization of Cowell's method. Numer. Math. 13 (1969) 154-175.
[9] C. E. Treanor, A method for the numerical integration of coupled first order differential equations with greatly different time constants,. Math. Comp. 20 (1966) 39-45.

