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SUMMARY 

A class of P-stable singlestep methods is discussed for solving initial-value problems involving second-order 
differential equations. The methods depend upon a parameter p > 0 and reduce to the classical methods for 
p = 0. A few choices of p have been discussed for which the methods are P-stable. Further, when p is chosen 
for linear problems as the square of the frequency of the periodic solution, the methods are P-stable. 
Numerical results for both linear and non-linear problems show that the P-stability is an important require- 
ment for determining periodic numerical solutions of second-order differential equations. 

1. Introduction 

Second-order differential equations with periodic solutions arise in a wide variety of  important  

physical problems. When conventional methods are applied to obtain the solution, the time 

increment must be limited to a value of  the order of  the reciprocal of  the frequency of  the 

periodic solution. Any at tempt  to use a larger increment results in the calculations becoming 

unstable and producing completely erroneous results. The St6rmer-Cowell linear multistep 

methods of  order greater than two are found to be unstable for large step sizes. Gautschi [2] 

and Salzer [6] have developed multistep methods based on Fourier polynomials.  Stiefel and 

Bettis [8] have discussed the stabilisation of  the Cowell method for integrating periodic initial- 

value problems. Hybrid multistep methods have been studied by  Dyer [1]. Lambert  and 

Watson [4] have discussed the application of  symmetric multistep methods to periodic initial- 

value problems. Singlestep methods have received much less at tention as compared with multi- 

step methods for solving periodic initial-value problems. Scheifele [7] has developed a singlestep 

method based on the series expansion of  the solution in terms of  certain entire functions. 

In this paper we develop singlestep methods of  the form 

Yn+ 1 
t 

Yn+ 1 

=Yn + hY'n + hZ~ '  (tn'Yn 'h)' 

t 

=Yn + h~2(tn 'Yn 'h), 
(1.1) 

to obtain a numerical solution of  the periodic initial:value problem 

y "  = f( t ,y) ,  
t 

y ( to )  = Y o , y ' ( t o )  =Yo.  
(1.2) 
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The functions t~l(tn,Yn,h) and t~2(tn,Yn,h ) are the increment functions. If  the increment 
functions are used with the same local truncation error of  O (h q + 1) then method (1.1) has local 

truncation errors of  O(h q ÷ 1) in y and O(h q) i ny ' .  The global truncation error of  method (1.1) 

is then defined to be O(h q) and method (1.1) is said to be of  order q. Let us apply method 

(1.1) to the initial-value problem 

y "  = - X y ,  X > 0 ,  y( to )  =yo ,y ' ( t o )  =Yo,  (1.3) 

and assume that it can be written in the form 

(1.4) 

where E(x/~-h) is a 2 x 2 matrix. 

Definition 1.1 Method (1.1) is said to have interval of  periodicity (0,Ho 2) if, for all H :  e 
(0,H~), H = X/'~ h, h being the step length, all the eigenvalues of  E(x/~ h) are complex and lie on 
the unit circle. 

Definition 1.2 The singlestep method defined by (1.1) is said to be P-stable if its interval of  
periodicity is (0,oo). 
Here, singlestep methods dependent on a parameter p are developed. The methods reduce to 
their classical counterparts for p = 0. When p ~ 0% methods of  lower order are obtained. For p 
equal to the square of  the frequency of  the periodic solution in the linear homogeneous 

equation, the singlestep methods are P-stable. 

2. Derivation of the methods 

We write (1.2) in the form 

y"  + py = ~o(t,y) (2.1) 

where 

¢(t ,y)  = f ( t ,y)  + py (2.2) 

and p > 0 is an arbitrary parameter to be determined. The equation (2.1) can be written as 

y"  + py = g(t) (2.3) 

where g(t) may be considered as an approximation to the function ~t , y ) .  The general solution 

of (2.3) will consist of  a complementary function and a particular integral. We have 
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y ( t )  =A  cos x /p t  +B sin V~ t 

if; + ~ p  n sin x / p ( t  - r) g(r)  d r  

319 

(2.4a) 

where A and B are arbitrary constants. Differentiating (2.4a) with respect to t we obtain 

y'(t)  = A ~ c / - p s i n v ~ t + B v r p c o s v r p t  

t 
+ £ c o s V ~ - ( t -  r ) g ( r ) d r .  

n 
(2.4b) 

Evaluating (2.4a) at tn+ 1, t n and (2.4b) at t n and eliminating A and B from the resulting 

equations we obtain 

1 
Y(tn+ ,)  = cos x/~h y ( t n )  + 7 s i n  x/ph y ' ( tn)  

1 f f t n+l  
+ 7 J tn sinx/P(tn+ I - r ) g ( r ) d r .  (2.5a) 

Evaluating (2.4a) at t n and (2.4b) at tn+ 1, tn and eliminating A and B from the resulting equa- 

tion we obtain 

Y'(tn + 1 ) = - -  @ sin x/~h y (t n ) + cos x/Ph y ' ( t  n ) 

f l  tn+ l  COS'~t'p'(tn+l r )g ( r )  dr .  
+ a t  n 

(2.5b) 

Since y( t )  and y ' ( t )  are known at the initial point t = t n, to derive singlestep methods for the 
numerical integration of equation (2.1), we replace the functiong(r) in (2.5) by an appropriate 

interpolating polynomial at t = t n and obtain singlestep methods of the form (1.1). 

2.1 Taylor-series methods 

We approximate ~o(t,y) by Taylor's interpolating polynomial of degree q + 1 at t = t n and sub- 
stitute for g(r)  in (2.5) the approximate polynomial 

q ( 7 - t n ) m  qo~rn)(tn)+Tq+l (2.6) 
g(r) = ~o(ry) = E m! 

m=O 

where 

Tq+l - 
(7 -- t n)q + 1 

(q + 1)! ¢(q+1)(~), tn < ~ < t n + l .  (2.7) 
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Neglecting the error term and using (2.6) in (2.5) we write the singlestep methods with 
co = x/rph as 

q 
Yn+l =YnC°Sco+hY'n sinco + ~ hm+2 Fro+2 ~o(rn) (2.8a) 

c o  m = O  

q 
I 

hY'n+l =-Yn  cosinco+hync°sco+ ~ hm+2 Fm+l~°(nm)' (2.8b) 
m = O  

with corresponding truncation errors in y and y '  being given by 

TEq+ 1 = hq+3 Fq+3 ~°(q+ 1)(~) + O(phq+4), (2.9a) 

T E'q+ 1 = h q+2 Fq+ 2 tp(q+l )(~) + O(phq+3), (2.9b) 

where we have used 

1 1 1 ( tn+l sinw/P(tn+l  - 7 " ) ( 7 " - t n )  m dr.  (2.10) 
Fro+2 - m! hm+2 X/t-p a t n 

From (2.10)we can obtain the recurrence relation 

1 
co2Fm+ 2- Fm, m = 0 , 1 , 2 ,  (2.11) 

m! ""' 

sin co 
with F o = cos co and Fl  - 

c o  

It can be easily verified from (2.10) that 

1 
Fro+2 ~ (m + 2-----~ as co-+0,  (2.12a) 

Fro+ 2 -~ 0 as co -+ oo, (2.12b) 

and from (2.11) 

1 
lim e°2 Fro+2 - t • (2.12c) 

tO---> oo m . 

Thus the modified Taylor-series method (2.8) will become the classical Taylor-series method of  
order q+l  as co -> 0 and of order q - 1  as co -+ oo. For arbitrary p, it is of  order q - 1 .  

2.2 Runge-Kutta methods 

To avoid calculation of  higher-order derivatives of  ~o(t,y) in the modified Taylor-series method 
(2.8) we write (2.8) in the modified Runge-Kutta form (see Lawson [5]) as 
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sin co M 
Yn + 1 = Yn COS W + by'  n co i= 1  Ki, 

M 
t 

hY'n+l = Yn w s i n e ° + h Y n  C°SW+ ]~ W~K i, 
i=1 

where 

h 2 
L1 = - ~  f ( tn,Yn),  

ph 2 
K1 =L1 + - - ~  Yn, 

h 2 
L i = -~- f ( t  n + aih, Zi), 

i-1 

t i~ 1 Zi = Yn + aihYn + aijLj' "= 

ph 2 
K i =Li+---  ~- Zi, i = 2 , 3  . . . . .  M. 

(2.13a) 

(2.13b) 

The parameters a i, W i and W/*are determined from the equations obtained by comparing the 

coefficients of  the various order derivatives of  ¢(t ,y)  in (2:8) and (2.13). The abscissas 0 

< a  i ~ 1, i = 2(1)M are specified suitably and the values W i and W' in  (2.13) for i = I(1)M are 

obtained as functions of  co. Further,  we also get an implicit equation in p which for p = 0 is 

identically satisfied. 

In order to get an explicit  expression for the determination of  p,  we adopt  Treanor's [9] 

approach and wri te f ( t , y )  in (1.2) as 

C 
f ( t , y )  = - p ( y  - Yn) + A + B( t  - tn) + T (t - tn) 2 . (2.14) 

Evaluating (2.14) at the points t n, t i = tn+aih , i = 2,3,4, we obtain four equations for the 

determinat ion of  the four unknowns p,A,B,C. Denoting f l  = f ( tn ,Yn),  fi = f(ti ,Yi),  ~°i = fi+PYi 

we write the values for A,B,C and p as 

a = f l  , 

2 2 
gh = {a3(¢2 - tpl) - a2(tp3 - ¢1)}/A4, 

Ch 2 
- {aa(~p2 - tpa) -az(~03 - ¢1)}/A4, 

2 

t Oe4 - f l ) A 4  -0c3  - f l ) A 3  +Oe2 - f l ) A 2 - }  

P = -  (y4 -y-~)A4 ( Y 3 - - Y ~ ) A 3 + ( Y z - Y , ) A :  

where 

A 2 = a3a4 (a4 - a3), A a = a2a4 (a4 - a2 ), 

(2.15) 

A4 =a2a3(a3 - a 2 ) ,  a2 :/:a3 =/=a4. 
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If  we make use of  the nodes of  the classical Runge-Kutta four-stage method wherein 

1 
a2 =a3 viz. a 2 : a 3  = 1 ,  a21 = 1 ,  a31 = 0 ,  a32 = 

a4 = 1, a41 =a42 = 0 ,  a43 = 1, 

the values of  A, B, C and p are obtained from (2.14) as 

A = f l ,  

Bh = -3¢1  + 2~2 + 2~o3 - q04, 

Ch 2 = 4(~Ol - ~o2 - ~o3 + ~o4), 

f3 - f 2  
p - -  - -  - -  

Y3 -- Y2 

M. K. Jain, R. K. Jain and U. Anantha Krishnaiah 

(2.16) 

2.3 Runge-Kutta- Treanor-Methods 

With the values of  A,B,C and p as given by  (2.15) we can write (2.14) as 

~o(r,y) = f ( r ,y )  + py 

C 
= PYn + A + B(r  - tn) + -~ ('c - tn) 2. (2.17) 

Using the polynomial  approximation (2.17) for g ( r )  in the integrals (2.5) and following the 

procedure adopted in Section 2.1 in determining the modified Taylor-series method (2.8), we 

obtain the following explicit  method 

t _ _  Yn+x =Yn +hYn sin w +h2[AF 2 +BhF3 +Ch2F4], (2.18a) 
6o 

t t 

Yn+l =Yn c°s w + h [AF1 + BhF2 + Ch2F3 ], (2.18b) 

which for a2 v~ a3 ~ a4 can be written in the modified Runge-Kutta form (2.13) for M = 4 with 

W1 = 2/72 - {2(a~ - a22)F3 - 4(a3 - a2)F4 }[A, ,  

2 
lg2 = (2a3F3 - 4a3F4)]A 4 , 

W3 = ( - 2 a ~ F  3 + 4a2F4)[A4, 

W4 = 0 ,  (2.19) 
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If  we 

(2.18) in the form (2.13) f o r M  = 4 with 

lgl = 2F2 - 6F3 + 8F4,  

W2 = W3 = 4(F3 - 2F4),  

W4 = - 2  (/:3 - 4F4 ), 

W ~ = 2 F  1 - 6 F  2 + 8 F  3, 

W 2 =  W 3 . = 4 ( F  2 - 2F  3), 

W~ = - 2  ( F  2 - 4 F  a ). 

W,* -- 2F,  - {2(a~ - aE)F 2 2  _ 4(aa _ a2)F3 }/A4, 

g¢ 2 
W 2 = (2a3F z - 4a3F 3)/A4, 

g~ 2 
W 3 = (-2a=F z + 4a2F3)/A 4, 

w*=0. 

make use of  the classical nodes and the values of  A, B, C, p as given in (2.16), we can write 

(2.20) 

3. Accuracy and stabifity 

The order q of  a singlestep method is defined to be the number q for which the coefficients of  

the method agree with the coefficients in the Taylor-series expansion of  the solutiony(t n +h) up 

to the term h q. We note that the explicit  methods (2.13) f o r M =  4 become methods of  O(h 4) 

and O(h 2) as p -+ 0 and as p -+ oo respectively. The Runge-Kutta-type methods (2.19) are of  
O(h 3) when p = 0 and of  O(h) as p ~ oo. 

Applying the modified singlestep method developed above to the test equation 

y"  = --)~y, ~k > 0, (3.1) 

we find that when p is estimated as given in (2.15) or p is chosen as the square of  the frequency 

of  the solution of the linear homogeneous problem in (3.1), viz. p = X, 

~°i = f ,  + PYi  

=--)~yi+pyi=O, f o r / =  1 , 2 , 3 , 4 ,  
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and so the method becomes 

sin 60 
Yn+ l = YnCOS 60 + hY '  n 

60 

hY'n + 1 = -Yn 60 sin 6o + hy' n cos 60, 

which can be written as 

y'.,,_] 

M. K. Jain, R. K. Jain and U. Anantha Krishnaiah 

V vl (3.2) 

[ -60sin co cos 60l L hyn l  

The characteristic equation of  the method is 

~2 _ 2 cos 60~ + 1 = 0. (3.3) 

The roots of  (3.3) are complex and are of  unit modulus and hence by the definition (1.2), the 

method is P-stable. 

4 .  Numerical results 

We use the method (2.13) for M =  4 and the Runge-Kutta-Treanor method (2.19), with Nys- 

tr6m nodes (see Henrici [3]) and Lobatto nodes to find the numerical solution of  the following 

initial-value problems: 

1 ) y = 0  
(i) y " + ( 1 0 0 +  4t  2 

with the exact solution 

y ( t )  = x,~-Jo (10t) where Jo is the Bessel function of  order zero. 

,, = _ x y , ,  = _  __y 
(ii) X r"~ , r3 

with the exact solution x = cos t, y = sin t where r 2 = x 2 +y2 .  

The error values E = lY( tn)-Ynl  are tabulated in Table I. We choose p as follows: 

for problem I: 

(i) as given by (2.15) 
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and 

t 
(ii) as Pn = Xn (tn) = 100 + 4t  2 

and for problem II: 

and 

(i) as given by (2.15) 

1 
(ii) asPn = X n ( t n ) -  3 " 

F n 

The modified methods produce superior results compared with the corresponding classical 

methods (iii) p = 0, for the choice (ii), viz. Pn = )kn(tn)" However, it is noticed that the choice of  

p given by  (i) gives results o f  almost the same accuracy for problem I, whereas for problem II 

the choice (ii) gives more accurate results. 

TABLE I 

METHODS NYSTROM-RK4 LOBATTO-RK4 RK-NYSTROM- RK-LOBATTO- 
(2.13) (2.13) TREANOR TREANOR 

(2.18) (2.18) 
h 

y"+  100+ y = 0 ,  y(t)=w/-i-Jo(lOt). Absolute error at t = 6: 

(i) 0.4868(-05) 0.3257(-03) 0.4868(-05) 
0.2 (ii) 0.4174(-05) 0.3477(-04) 0.4417(-04) 

(iii) 0.1470 0.1999 0.2372 

0.25 

0.5 

0.3257(-03) 
0.7120(-05) 
0.2388 

(i) 0.8081(-05) 0.3881(-04) 0.8081(-05) 0.3881(-04) 
(ii) 0.3308(-04) 0.1197(-03) 0.1458(-03) 0.6222(-04) 
(iii) 0.3661 0.2254 0.8465(+04) 0.2274 

(i) 0.3229(-04) 0.1200(-03) 0.3229(-04) 0.1200(-03) 
(ii) 0.1816(-02) 0.2172(-03) 0.3832(-02) 0.3209(-03) 
(iii) 0.2279(+09) 0.2555(+t0) 0.1155(+10) 0.2460(+10) 

IX " = - - X / r  3 | X = COS t 
y" = y/r 3 ~ y = sin t Absolute error in radius at t = 12~r: 

(i) 0.1095( 05) 0.1491( 03) 0.1322(-04) 0.1389(-03) 
Ir (ii) 0.3404(-06) 0.8612(-07) 0.1076(-03) 0.1875(-04) 
18 

(iii) 0.1324(-04) 0.1151(-04) 0.1725(-01) 0.7862(-03) 

n (i) 0.5971(-06) 0.3203( 03) 0.3002(-04) 0.3003(-03) 
1-'5- (ii) 0.1201(-05) 0.3255(-06) 0.2643(-03) 0.4654(-04) 

(iii) 0.3258(-04) 0.2855(-04) 0.3065(-01) 0.1356(-02) 

n (i) 0.7567( 05) 0.5917(-02) 0.4294(-03) 0.5566(-02) 
- -  (ii) 0.2033(-04) 0.5508(-05) 0.1907( 02) 0.3494(-03) 10 

(iii) 0.2361(-03) 0.2144(-03) 0.1350 0.4541(-02) 
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